3.13 \(\int \frac{1}{\sqrt{-1-\cot ^2(x)}} \, dx\)

Optimal. Leaf size=14 \[ -\frac{\cot (x)}{\sqrt{-\csc ^2(x)}} \]

[Out]

-(Cot[x]/Sqrt[-Csc[x]^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0226727, antiderivative size = 14, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 12, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {3657, 4122, 191} \[ -\frac{\cot (x)}{\sqrt{-\csc ^2(x)}} \]

Antiderivative was successfully verified.

[In]

Int[1/Sqrt[-1 - Cot[x]^2],x]

[Out]

-(Cot[x]/Sqrt[-Csc[x]^2])

Rule 3657

Int[(u_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> Int[ActivateTrig[u*(a*sec[e + f*x]^2)^p]
, x] /; FreeQ[{a, b, e, f, p}, x] && EqQ[a, b]

Rule 4122

Int[((b_.)*sec[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[(b*ff)
/f, Subst[Int[(b + b*ff^2*x^2)^(p - 1), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{b, e, f, p}, x] &&  !IntegerQ[p
]

Rule 191

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x*(a + b*x^n)^(p + 1))/a, x] /; FreeQ[{a, b, n, p}, x] &
& EqQ[1/n + p + 1, 0]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{-1-\cot ^2(x)}} \, dx &=\int \frac{1}{\sqrt{-\csc ^2(x)}} \, dx\\ &=\operatorname{Subst}\left (\int \frac{1}{\left (-1-x^2\right )^{3/2}} \, dx,x,\cot (x)\right )\\ &=-\frac{\cot (x)}{\sqrt{-\csc ^2(x)}}\\ \end{align*}

Mathematica [A]  time = 0.006912, size = 14, normalized size = 1. \[ -\frac{\cot (x)}{\sqrt{-\csc ^2(x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/Sqrt[-1 - Cot[x]^2],x]

[Out]

-(Cot[x]/Sqrt[-Csc[x]^2])

________________________________________________________________________________________

Maple [A]  time = 0.008, size = 15, normalized size = 1.1 \begin{align*} -{\cot \left ( x \right ){\frac{1}{\sqrt{-1- \left ( \cot \left ( x \right ) \right ) ^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(-1-cot(x)^2)^(1/2),x)

[Out]

-cot(x)/(-1-cot(x)^2)^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 1.46695, size = 16, normalized size = 1.14 \begin{align*} -\frac{1}{\sqrt{-\tan \left (x\right )^{2} - 1}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-1-cot(x)^2)^(1/2),x, algorithm="maxima")

[Out]

-1/sqrt(-tan(x)^2 - 1)

________________________________________________________________________________________

Fricas [C]  time = 1.50184, size = 45, normalized size = 3.21 \begin{align*} \frac{1}{2} \,{\left (-i \, e^{\left (2 i \, x\right )} - i\right )} e^{\left (-i \, x\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-1-cot(x)^2)^(1/2),x, algorithm="fricas")

[Out]

1/2*(-I*e^(2*I*x) - I)*e^(-I*x)

________________________________________________________________________________________

Sympy [A]  time = 0.547312, size = 15, normalized size = 1.07 \begin{align*} - \frac{\cot{\left (x \right )}}{\sqrt{- \cot ^{2}{\left (x \right )} - 1}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-1-cot(x)**2)**(1/2),x)

[Out]

-cot(x)/sqrt(-cot(x)**2 - 1)

________________________________________________________________________________________

Giac [C]  time = 1.17405, size = 38, normalized size = 2.71 \begin{align*} -\frac{2 i}{{\left (\frac{\cos \left (x\right ) - 1}{\cos \left (x\right ) + 1} - 1\right )} \mathrm{sgn}\left (\sin \left (x\right )\right )} - 2 i \, \mathrm{sgn}\left (\sin \left (x\right )\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-1-cot(x)^2)^(1/2),x, algorithm="giac")

[Out]

-2*I/(((cos(x) - 1)/(cos(x) + 1) - 1)*sgn(sin(x))) - 2*I*sgn(sin(x))